Stochastic Differential Games and Viscosity Solutions of Hamilton--Jacobi--Bellman--Isaacs Equations
نویسندگان
چکیده
In this paper we study zero-sum two-player stochastic differential games with the help of theory of Backward Stochastic Differential Equations (BSDEs). At the one hand we generalize the results of the pioneer work of Fleming and Souganidis [8] by considering cost functionals defined by controlled BSDEs and by allowing the admissible control processes to depend on events occurring before the beginning of the game (which implies that the cost functionals become random variables), on the other hand the application of BSDE methods, in particular that of the notion of stochastic “backward semigroups” introduced by Peng [14] allows to prove a dynamic programming principle for the upper and the lower value functions of the game in a straight-forward way, without passing by additional approximations. The upper and the lower value functions are proved to be the unique viscosity solutions of the upper and the lower Hamilton-Jacobi-Bellman-Isaacs equations, respectively. For this Peng’s BSDE method (Peng [14]) is translated from the framework of stochastic control theory into that of stochastic differential games. AMS Subject classification: 93E05, 90C39
منابع مشابه
Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations
We study singular perturbations of optimal stochastic control problems and differential games arising in the dimension reduction of system with multiple time scales. We analyze the uniform convergence of the value functions via the associated Hamilton-Jacobi-Bellman-Isaacs equations, in the framework of viscosity solutions. The crucial properties of ergodicity and stabilization to a constant th...
متن کاملSecond Order Hamilton--Jacobi Equations in Hilbert Spaces and Stochastic Boundary Control
The paper is concerned with fully nonlinear second order Hamilton{Jacobi{Bellman{ Isaacs equations of elliptic type in separable Hilbert spaces which have unbounded rst and second order terms. The viscosity solution approach is adapted to the equations under consideration and the existence and uniqueness of viscosity solutions is proved. A stochastic optimal control problem driven by a paraboli...
متن کاملBellman Equations Associated to The Optimal Feedback Control of Stochastic Navier-Stokes Equations
We study the infinite dimensional second-order Hamilton-Jacobi-Bellman equations associated to the feedback synthesis of stochastic Navier-Stokes equation forced by space-time white noise. Uniqueness of viscosity solutions and short-time existence are proven for these infinite dimensional partial differential equations.
متن کاملHamilton-Jacobi Equations and Two-Person Zero-Sum Differential Games with Unbounded Controls
A two-person zero-sum differential game with unbounded controls is considered. Under proper coer-civity conditions, the upper and lower value functions are characterized as the unique viscosity solutions to the corresponding upper and lower Hamilton–Jacobi–Isaacs equations, respectively. Consequently, when the Isaacs' condition is satisfied, the upper and lower value functions coincide, leading...
متن کاملUniqueness Results for Second-Order Bellman--Isaacs Equations under Quadratic Growth Assumptions and Applications
In this paper, we prove a comparison result between semicontinuous viscosity sub and supersolutions growing at most quadratically of second-order degenerate parabolic Hamilton-Jacobi-Bellman and Isaacs equations. As an application, we characterize the value function of a finite horizon stochastic control problem with unbounded controls as the unique viscosity solution of the corresponding dynam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 47 شماره
صفحات -
تاریخ انتشار 2008